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Abstract. The simple formalization and the intuitive graphical repre-
sentation are main reasons for the growing popularity of Formal Concept
Analysis (FCA). FCA gives the user the possibility to explore the struc-
ture of data and understand correlations and implications in the data
set. Recently, triadic FCA (3FCA) has become increasingly popular, but
exploring triadic conceptual landscapes is not easy, especially because
of the less immediate structure of the space of triadic concepts. Even
more, available graphical representations of trilattices are barely intelli-
gible and hard to obtain even for small data sets. Driven by practical re-
quirements, we propose a new navigation paradigm for triadic conceptual
landscapes based on a neighborhood notion arising from appropriately
defined dyadic concept lattices. Understanding the corresponding reach-
ability relation gives also new theoretical insights about the behavior of
triadic concepts and the corresponding triadic data sets.

1 Introduction

With the advent of the information society and the rise of data science, under-
standing big collections of information and knowledge and representing them
in intuitive ways is more important than ever. Formal concept analysis is well-
known for its capabilities addressing knowledge processing and knowledge rep-
resentation as well as offering reasoning support for understanding the structure
of large collections of data.

For dyadic FCA – the original version of FCA based on a binary incidence
relation – this has proven to be the case through the graphical representation
of the concept lattice that offers a intuitive visualization and hence understand-
ing of the data. From this graphical representation, one can read any relation
between objects and attributes, but also implications holding in the data. For
cases where the concept lattice gets too big to be represented in a readable way,
“local” navigational paradigms have been proposed, where only one concept and
its direct neighbor concepts are visualized and the user can explore the concept
lattice by successively moving to neighboring concepts [2, 7].

Dyadic FCA was extended in [11] by Rudolf Wille and Fritz Lehmann to the
triadic case, featuring a ternary instead of a binary incidence relation. The use
of FCA increased over the last years, still there was little focus on applications of
triadic FCA (3FCA), mainly because of its higher complexity and unavailability



of a graphical representation for trilattices which quickly become impossible
to draw even for small data sets. Although there are a lot of data collections
that map perfectly to a triadic representation, for instance collaborative tagging
scenarios or folksonomies ([10]), there is no good support for helping humans
understand the structure of the triconcepts in a tricontext. Despite the fact
that 3FCA is just an extension of FCA, the graphical representation for the
dyadic case does not have an intuitive extension to the triadic case ([1, 6, 8]).
Wille and Lehmann proposed a way to graphically represent a triadic context
by using a triadic diagram in [11], inspired by the concept lattice from the dyadic
case. However, the geometric representation obtained does not give much insight
into the structure of the tricontext and cannot be easily read and understood.
Furthermore, even a small set of triadic data can generate a large amount of
triconcepts.

For the reasons mentioned above, we intend to present in this article a method
to locally display a smaller part of the space of triconcepts, instead of displaying
all of them at once. Our goal is to find an intuitive navigation strategy that allows
for moving from one such local view to other, adjacent ones. Furthermore, we will
formally analyze the properties of this strategy and ultimately suggest algorithms
for producing the structures necessary for browsing the space of triconcepts using
developed and theoretically well-understood methods.

Exploiting the fact that triconcepts are built three-dimensional, the naviga-
tion strategy we propose makes use of the elegance and the expressive power of
dyadic concept lattices. Navigation starts local, with a triconcept. Herefrom, we
fix what we call a perspective, i.e., one of the three dimensions (extent, intent
or modus) and then collect all so-called directly reachable triconcepts. For each
perspective, the triconcepts directly reachable via this perspective can be ar-
ranged in a dyadic concept lattice, hence navigating among them benefits from
all advantages concept lattices are offering. After selecting a directly reachable
triconcept, one may change the perspective and move towards another set of
reachable triconcepts, exploring again another concept lattice. Despite of its ap-
parent growth of computational complexity, this approach allows to cope with
large sets of triconcepts. Moreover, the local navigation strategy discussed in
this paper gives rise to a list of theoretical questions: reachability of all tricon-
cepts, the existence and the number of reachability clusters, their structure and
a method to navigate from one to another. Understanding these clusters proves
to be not trivial and gives interesting insights about the inherent conceptual
structure of triadic data.

2 Preliminaries

This section introduces the basic notions of triadic formal concept analysis. For
further information about the dyadic case or more specific results about 3FCA
we refer the interested reader to the standard literature [3, 4, 11, 12].

Definition 1. A triadic context (also: tricontext) is a quadruple (K1,K2,K3, Y ),
where K1,K2 and K3 are sets and Y ⊆ K1 ×K2 ×K3 is a ternary relation be-



tween them. The elements of K1,K2,K3 are called (formal) objects, attributes
and conditions, respectively. An element (g,m, b) ∈ Y is read object g has at-
tribute m under condition b.

The following definition shows how dyadic contexts can be obtained from a
triadic one in a natural way.

Definition 2 (Derived contexts). Every triadic context (K1,K2,K3, Y ) gives
rise to the following dyadic contexts:

K(1) := (K1,K2 ×K3, Y
(1)) with gY (1)(m, b) :⇔ (g,m, b) ∈ Y ,

K(2) := (K2,K1 ×K3, Y
(2)) with mY (2)(g, b) :⇔ (g,m, b) ∈ Y , and

K(3) := (K3,K1 ×K2, Y
(3)) with bY (3)(g,m) :⇔ (g,m, b) ∈ Y .

For {i, j, k} = {1, 2, 3} and Ak ⊆ Kk, we define K(ij)
Ak

:= (Ki,Kj , Y
(ij)
Ak

), where

(ai, aj) ∈ Y (ij)
Ak

if and only if (ai, aj , ak) ∈ Y for all ak ∈ Ak.

Intuitively, the contexts K(i) represent “flattened” versions of the triadic con-
text, obtained by putting the “slices” of (K1,K2,K3, Y ) side by side. Moreover,

K(ij)
Ak

corresponds to the intersection of all those slices that correspond to ele-
ments of Ak.

In triadic FCA, there are two extensions for the dyadic derivation operators.

Definition 3 ((i)-derivation operators). For {i, j, k} = {1, 2, 3} with j < k
and for X ⊆ Ki and Z ⊆ Kj ×Kk the (i)-derivation operators are defined by:

X 7→ X(i) := {(aj , ak) ∈ Kj ×Kk | (ai, aj , ak) ∈ Y for all ai ∈ X}.
Z 7→ Z(i) := {ai ∈ Ki | (ai, aj , ak) ∈ Y for all (aj , ak) ∈ Z}.

Obviously, these derivation operators correspond to the derivation operators of
the dyadic contexts K(i), i ∈ {1, 2, 3}.

Definition 4 ((i, j,Xk)-derivation operators). For {i, j, k} = {1, 2, 3} and
Xi ⊆ Ki, Xj ⊆ Kj , Xk ⊆ Kk, the (i, j,Xk)-derivation operators are defined by

Xi 7→ X
(i,j,Xk)
i := {aj ∈ Kj | (ai, aj , ak) ∈ Y for all (ai, ak) ∈ Xi ×Xk}

Xj 7→ X
(i,j,Xk)
j := {ai ∈ Ki | (ai, aj , ak) ∈ Y for all (aj , ak) ∈ Xj ×Xk}.

The (i, j,Xk)-derivation operators correspond to those of the dyadic contexts

(Ki,Kj , Y
(ij)
Xk

).
Similar to the notion of formal concepts in dyadic FCA, triadic concepts can

be defined ([11]). A triadic concept is a maximal box of incidences (Proposition 1)
and can be generated using derivation operators (Proposition 2).

Definition 5. A triadic concept (short: triconcept) of K := (K1,K2,K3, Y ) is
a triple (A1, A2, A3) with Ai ⊆ Ki for i ∈ {1, 2, 3} and Ai = (Aj × Ak)(i) for
every {i, j, k} = {1, 2, 3} with j < k. The sets A1, A2, and A3 are called extent,
intent, and modus of the triadic concept, respectively. We let T(K) denote the
set of all triadic concepts of K.

Proposition 1. The triconcepts of a triadic context (K1,K2,K3, Y ) are exactly
the maximal triples (A1, A2, A3) ∈ P(K1)×P(K2)×P(K3) with A1×A2×A3 ⊆
Y , with respect to the component-wise set inclusion.



Proposition 2. For Xi ⊆ Ki and Xk ⊆ Kk with {i, j, k} = {1, 2, 3}, let Aj :=

X
(i,j,Xk)
i , Ai := A

(i,j,Xk)
j and Ak := (Ai×Aj)

(k) (if i < j) or Ak := (Aj ×Ai)
(k)

(if j < i). Then (A1, A2, A3) is the triadic concept bik(Xi, Xk) with the property
that it has the smallest k-th component among all triadic concepts (B1, B2, B3)
with the largest j-th component satisfying Xi ⊆ Bi and Xk ⊆ Bk. In particular,
bik(Ai, Ak) = (A1, A2, A3) for each triadic concept (A1, A2, A3) of K.

3 Motivating example

In this section we present a small example, aiming to explain how the local
navigation paradigm works in a set of triconcepts. The related theoretical aspects
will be introduced in the following sections. For this, we consider the hostel
tricontext from [5], whose trilattice is represented in Figure 1. The objects of the
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Fig. 1: Trilattice of the tricontext “Hostels”.

triadic data set are hostels, the attributes services provided by the hostels, while
the conditions are web portals where the hostels can be rated. The graphical
representation as a 3-net displays all triconcepts and the equivalence classes
to which they belong in a triadic diagram. The extent, intent and modus of a
triconcept can be read by using the order diagrams displayed on the side of the
trilattice. Global navigation in a 3-net becomes difficult for a (slightly) larger set
of triconcepts and this is the case in many 3FCA applications. What graphical
representation should be employed in the cases where a representation as a 3-net



is not possible ([12])? The complexity of the trillatice structure and that of the
order diagrams of the extents, intents and modi set makes a global navigation
approach quite difficult.

To cope with the complexity of larger data sets, we propose a local navigation
paradigm which starts from a triconcept (A1, A2, A3) and the selection of one
of its components (extent, intent or modus), which we then call perspective. We

build the projected context K(ij)
Ak

along perspective k and compute its concept
lattice. It can be proved that every dyadic concept of this projected context
corresponds to exactly one triconcept in the original trilattice. These triconcepts
are called directly reachable and navigation among them is performed in the
underlying dyadic concept lattice.

To start local navigation, choose T := ({g3, g4, g5}, {m0,m1,m2,m3,m5}, {c1,
c2}) and consider perspective 3 (i.e., modus). By projecting along {c1, c2}, we
obtain the concept lattice displayed in Figure 2. Triconcept T corresponds to the
leftmost dyadic concept in Figure 2. Moreover, all dyadic concepts correspond to
some triconcepts, having either the same modus or a larger one. The navigation
can be continued herefrom by choosing one of the directly reachable triconcepts

from T and a perspective, i.e., one of the concepts of K(12)
{c1,c2} and then navigating

within the new concept lattice. For example, the rightmost concept of this lattice
corresponds to the triconcept ({g2, g3, g4}, {m2,m3,m4}, {c1, c2}). By choosing
perspective 1 (i.e., extent), the triconcepts reachable herefrom are represented
in Figure 3.

Fig. 2: Directly reachable tricon-
cepts from T using perspective 3.
The extent and intent of the tricon-
cepts can be read from the concept
lattice, while the modus is computed
using the corresponding derivation
operator (·)3 in the tricontext.

Fig. 3: Reachable triconcepts from T
using perspective 3 and then 1. Only
intent and modus are displayed in
the concept lattice, the extent is
computed using the corresponding
derivation operator (·)1 in the tri-
context.



This example shows how triconcepts can be clustered according to their
reachability and how we can navigate from one triconcept to another. We might
ask whether all concepts might be reachable by this approach or not, what are
the maximal strongly connected components of the reachability relation, i.e., the
reachability clusters, what are the properties of the set of reachability clusters
and how can we set up a local navigation paradigm herefrom. By changing per-
spectives, all concepts in this example prove to be reachable (though not directly
reachable). We will prove later on that this will not always be the case.

Motivated by this short example, we introduce in the following sections the
theoretical aspects and considerations of the proposed navigation paradigm.

4 Reachable triconcepts

This section aims to define the exploration paradigm exemplified in Section 3
and to discuss some theoretical issues. The following propositions are direct con-
sequences of Proposition 2. For every triconcept, by projecting along one of the
dimensions, we obtain a formal dyadic context, where the projection of the tri-
concept is a dyadic concept of the corresponding concept lattice (Proposition 3).
Moreover, every dyadic concept herefrom generates a triconcept (Proposition 4).

Proposition 3. Let (A,B,C) ∈ T(K) be a triadic concept. Then (A,B) ∈
B(K(12)

C ).

Proposition 4. Let (A,B,C) ∈ T(K) be a triadic concept. Let (A1, A2) ∈
B(K(12)

C ). Then (A1, A2, (A1 ×A2)(3)) ∈ T(K).

By the above propositions, we conclude that given a triconcept (A,B,C),
fixing either its extent, or its intent or modus, gives rise to a (dyadic) concept
lattice, every concept of which can be deterministically turned into a triconcept
by computing the missing component using an appropriate triadic derivation op-
erator (for instance (·)(3)). Based on this, we are now able to define a reachability
relation between triconcepts.

Definition 6. For (A1, A2, A3) and (B1, B2, B3) triadic concepts, we say that
(B1, B2, B3) is directly reachable from (A1, A2, A3) using perspective (1) and

we write (A1, A2, A3) ≺1 (B1, B2, B3) if and only if (B2, B3) ∈ B(K(23)
A1

). Anal-
ogously, we can define direct reachability using perspectives (2) and (3).

We say that (B1, B2, B3) is directly reachable from (A1, A2, A3) if it is di-
rectly reachable using at least one of the three perspectives, that is, formally
(A1, A2, A3) ≺ (B1, B2, B3) :⇔ [(A1, A2, A3) ≺1 (B1, B2, B3)]∨ [(A1, A2, A3) ≺2

(B1, B2, B3)] ∨ [(A1, A2, A3) ≺3 (B1, B2, B3)].

By Proposition 3, two triconcepts having the same extent, or the same intent,
or modus are always mutually directly reachable. Hence, in a trilattice diagram,
all triconcepts aligned on the same line (i.e., being equivalent with respect to
one of the three preorders) are mutually directly reachable:



Proposition 5. Let (A1, A2, A3), (B1, B2, B3) be two triconcepts. If Ai = Bi for
an i ∈ {1, 2, 3} then (A1, A2, A3) ≺i (B1, B2, B3) and (B1, B2, B3) ≺i (A1, A2, A3).

Definition 7. We define the reachability relation between two triconcepts as
being the transitive closure of the direct reachability relation ≺. We denote this
relation by /.

Definition 8. The equivalence class of a triconcept (A1, A2, A3) with respect
to the preorder / on T(K) will be called a reachability cluster and denoted by
[(A1, A2, A3)].

Intuitively, the reachability cluster of (A1, A2, A3) contains all triconcepts
which are mutually reachable from (A1, A2, A3) When considering ≺ as directed
edge relation of a graph, reachability clusters correspond to the strongly con-
nected components of that graph.

The following results are providing a better understanding of the reachability
clusters and their structure. We prove that there exist triconcepts which are
always reachable (Proposition 6). Moreover, the induced order on the set of
reachability clusters always has a greatest element.

Proposition 6. The trivial triconcepts θ1 := (K1,K2, (K1 × K2)(3)), θ2 :=
(K1,K3, (K1 ×K3)(2)) and θ3 := (K2,K3, (K2 ×K3)(1)) are always reachable.
Moreover, they are always directly reachable.

Proof. Let us assume, without restricting generality that (K1 × K2)(3) =
(K1 ×K3)(2) = (K2 ×K3)(1) = ∅. Let (A,B,C) ∈ T(K). Using perspective (3),

we have that (A,B) ∈ B(K(12)
C ). The greatest and the lowest elements of K(12)

C

are (K1, ∅) and (∅,K2), respectively. Hence (A,B,C) / θ2 and (A,B,C) / θ3. By
choosing another perspective, θ1 is directly reached from (A,B,C).

In particular, if (A,B,C) = θ1, then the trivial triconcepts θ2 and θ3 are
reachable by perspective (1) . �

Corollary 1. The ordered set (T(K)/ ∼,≤) has always a greatest element, the
reachability cluster of the trivial concepts. We denote this cluster by ∇.

Proposition 7. If (A,B,C) is a triconcept with either A = K1, or B = K2, or
C = K3, then (A,B,C) ∈ ∇.

Proof. Every trivial concept is reachable from (A,B,C). Let us assume that
A = K1. Take now θ1 := (K1,K2, ∅) and choose perspective (1). We obtain the

context K(23)
K1

:= (K2,K3, Y
(23)
K1

). We want to prove that (B,C) ∈ B(K(23)
K1

).

We know that B = (K1 × C)(2) = {m ∈ K2 | ∀g ∈ K1, ∀b ∈ C. (g,m, b) ∈
Y }. Also, by definition, C(2,3,K1) = {m ∈ K2 | ∀g ∈ K1, ∀b ∈ C. (g,m, b) ∈ Y },
hence B = C(2,3,K1). Analogously, C = B(2,3,K1). �

Remark 1. (1) If (A1, B1, C1) and (A2, B2, C2) are triconcepts with A1 = K1 or
B1 = K2 or C1 = K3 and (A1, B1, C1) / (A2, B2, C2), then (A2, B2, C2) ∈ ∇.



(2) If (A1, B1, C1) ∈ ∇ and (A1, B1, C1) / (A2, B2, C2) then (A2, B2, C2) ∈ ∇.
The converse does not hold true, i.e., more than one reachability cluster
is possible. Take for example K1 := {g1, g2},K2 := {m1,m2}, and K3 :=
{b1, b2} with Y := {(g1,m1, b1)}. In this context there are exactly two reach-
ability clusters, ∇ = {θ1, θ2, θ3} and {(g1,m1, b1)}.

Example 1. In general, triconcepts might be structured in more than one cluster,
as the following examples show. A more profound discussion about the depth
and width of the ordered set of reachability clusters will be given in Section 5.

(1) A tricontext with more than two clusters:

b1 m1 m2 m3

g1 ×
g2
g3

b2 m1 m2 m3

g1 ×
g2 ×
g3

b3 m1 m2 m3

g1 ×
g2 ×
g3 ×

The triconcepts are partitioned in clusters the following way:
C1 = {({g3}, {m3}, {b3})}, C2 = {({g2}, {m2}, {b2, b3})}, C3 = {({g1}, {m1},
{b1, b2, b3}), ({g1, g2, g3}, {m1,m2,m3}, ∅), ({g1, g2, g3}, ∅, {b1, b2, b3}), (∅,
{m1,m2,m3}, {b1, b2, b3})}, and C1 ≤ C2 ≤ C3. Thereby, the triconcepts
({g3}, {m3}, {b3}) and ({g2}, {m2}, {b2, b3}) have disjoint extents and in-
tents, but ({g3}, {m3}, {b3}) ≺3 ({g2}, {m2}, {b2, b3}).

(2) A tricontext with exactly two clusters

b1 m1 m2

g1 ×
g2 ×

b2 m1 m2

g1
g2 ×

b3 m1 m2

g1
g2 ×

The triconcepts are partitioned in clusters the following way:
C1 = {({g1}, {m1}, {b1}), ({g2}, {m2}, {b1, b2}), ({g2}, {m1}, {b3})}, C2 =
{({g1, g2}, {m1,m2}, ∅), ({g1, g2}, ∅, {b1, b2, b3}), (∅, {m1,m2}, {b1, b2, b3})},
and C1 ≤ C2.

(3) A tricontext with a single cluster

b1 m1 m2 m3

g1 ×
g2
g3

b2 m1 m2 m3

g1 ×
g2
g3 ×

b3 m1 m2 m3

g1 × ×
g2
g3

The triconcepts are the following:
C = {({g1}, {m1}, {b1, b3}), ({g1}, {m2}, {b2, b3}), ({g1}, {m1,m2}, {b3}),
({g1, g3}, {m2}, {b2}), ({g1, g2, g3}, {m1,m2,m3}, ∅), ({g1, g2, g3}, ∅,
{b1, b2, b3}), (∅, {m1,m2,m3}, {b1, b2, b3})}.

5 Reachability in Composed Tricontexts

There is a way of composing several tricontexts such that the reachability clusters
of the composed tricontext coincide with the union of the reachability clusters



of the constituents, except for the greatest cluster. We will exploit this corre-
spondency later.

Definition 9. Given tricontexts K1 := (K1
1 ,K

1
2 ,K

1
3 , Y

1), . . . ,Kn := (Kn
1 ,K

n
2 ,

Kn
3 , Y

n), with Ki
j and Ki

k being disjoint for all j 6= k and all i ∈ {1, 2, 3},
their composition K1 ] . . . ] Kn is the tricontext K := (K1,K2,K3, Y ) with
Ki :=

⋃n
k=1K

k
i and Y :=

⋃n
k=1 Y

k.

Proposition 8. Let (K1,K2,K3, Y ) = K1 ] . . . ] Kn with n ≥ 2 and all Ki
j

being non-empty. Then (A1, A2, A3) is a triconcept of (K1,K2,K3, Y ) iff

– A1, A2, A3 are all non-empty and (A1, A2, A3) is a triconcept of some Kj or
– (A1, A2, A3) is one of (∅,K2,K3) or (K1, ∅,K3) or (K1,K2, ∅).

Proof. “If”: First, consider a triconcept (A1, A2, A3) of some Kj with A1,
A2, and A3 nonempty. Now suppose (A1, A2, A3) were not a triconcept of K, i.e.,
at least one of A1, A2, A3 can be enlarged. W.l.o.g., assume some a ∈ K1 \ A1

with (A1 ∪ {a}) × A2 × A3 ⊆ Y . Now, for a2 ∈ A2 and a3 ∈ A3, we have
(a, a2, a3) ∈ Y , implying a ∈ Kj and thus (A1∪{a})×A2×A3 ∈ Yj , contradicting
that (A1, A2, A3) is a triconcept of Kj .

Second, (A1, A2, A3) = (∅,K2,K3) is maximal unless for some a holds {a}×
K2×K3 ⊆ Y . Yet this contradicts the construction of Y . The cases of (K1, ∅,K3)
and (K1,K2, ∅) follow by symmetry.

“Only if”: for any triconcept (A1, A2, A3) of (K1,K2,K3, Y ) with nonempty
A1, A2, A3, we find an (a1, a2, a3) ∈ A1 × A2 × A3. By construction, for every
such (a1, a2, a3) must exist some j with a1 ∈ Kj

1 and a2 ∈ Kj
2 and a3 ∈ Kj

3 .

Consequently, A1 ⊆ Kj
1 and A2 ⊆ Kj

2 and A3 ⊆ Kj
3 . Moreover, maximality of

(A1, A2, A3) in (K1,K2,K3, Y ) implies maximality in Kj .
Finally if one of the components of (A1, A2, A3) is empty, the other two must

be maximal by definition. �

Proposition 9. Let K = (K1,K2,K3, Y ) = K1 ] . . . ] Kn with n ≥ 2 and all
Ki

j being non-empty. Then (B1, B2, B3) is directly reachable from (A1, A2, A3)
in K iff

– they are triconcepts of the same Kj and (B1, B2, B3) is directly reachable
from (A1, A2, A3) in Kj or

– one of B1, B2, B3 is empty.

Proof. “If”: First assume (A1, A2, A3) is directly reachable from (B1, B2, B3)
and both are are triconcepts of the same Kj . W.l.o.g. let (1) be the corresponding
perspective. Then A1 ⊆ B1. Moreover, none of A1, A2, A3 is empty (otherwise
(A1, A2, A3) cannot be a triconcept of Kj due to Proposition 8). We find that

(B2, B3) ∈ B(Kj
(23)
A1

). This implies (B2, B3) ∈ B(K(23)
A1

), thus (B1, B2, B3) is
directly reachable from (A1, A2, A3) in K.

Next, assume that one of B1, B2, B3 is empty. W.l.o.g. assume B1 = ∅. By

Proposition 8, this entails B2 = K2 and B3 = K3. Then (∅,K3) ∈ B(K(13)
A2

)



whenever A2 6= ∅ and (∅,K2) ∈ B(K(12)
A3

) whenever A3 6= ∅ (it is not possible
that A2 = ∅ = A3), therefore (A1, A2, A3) ≺ (B1, B2, B3) holds in K.

“Only if”: Assume (A1, A2, A3) ≺i (B1, B2, B3) in K and all of B1, B2, B3

are nonempty. W.l.o.g. assume i = 1, i.e., (B2, B3) ∈ B(K(23)
A1

). Proposition 8
implies that (B1, B2, B3) must be a triconcept of some Kj . Then, due to ∅ 6=
A1 ⊆ B1 ⊆ Kj

1 we find that (A1, A2, A3) cannot be a trivial triconcept, thus it

is a triconcept of Kj . Then (B2, B3) ∈ B(K(23)
A1

) implies (B2, B3) ∈ B(Kj
(23)
A1

)
thus (A1, A2, A3) ≺1 (B1, B2, B3) holds in Kj . �

Corollary 2. Let K = (K1,K2,K3, Y ) = K1 ] . . . ] Kn with n ≥ 2 and all Ki
j

being non-empty. Then (B1, B2, B3) is reachable from (A1, A2, A3) in K iff

– they are triconcepts of the same Kj and (B1, B2, B3) is reachable from
(A1, A2, A3) in Kj or

– one of B1, B2, B3 is empty.

Proof. This is a straightforward consequence of the previous proposition and
the fact that all trivial triconcepts (those having one empty component) are
together in the maximal cluster. �

Using the above results, we ask if there is any correlation between the car-
dinality of the three sets of a tricontext and the number of the reachability
clusters we obtain. The first observation was that we can find qubic tricontexts
(i.e., |K1| = |K2| = |K3| = n), where the number of clusters equals n+ 1.

Proposition 10. Let K = (K1,K2,K3, Y ) be a tricontext of size n×n×n with
K1 = {k1i | 1 ≤ i ≤ n}, K2 = {k2i | 1 ≤ i ≤ n}, K3 = {k3i | 1 ≤ i ≤ n}. Let the
relation Y be the spatial main diagonal of the tricontext, meaning that a triple
(k1i , k

2
j , k

3
l ) ∈ Y iff i = j = k. Then there are n+1 clusters, n minimal clusters

and the maximal cluster.

Proof. Considering Proposition 9, the conclusion is immediate, since K =
({k11}, {k21}, {k31}, {(k11, k21, k31)}) ] . . . ] ({k1n}, {k2n}, {k3n}, {(k1n, k2n, k3n)}) �

Based on this example, we assumed that the number of clusters is bounded
by the minimal dimension of the tricontext plus one. This assumption proved to
be false due to the following example.

Example 2. Consider the following 4× 6× 6 tricontext K466.

α 1 2 3 4 5 6

a ×
b ×
c ×
d
e
f

β 1 2 3 4 5 6

a ×
b
c
d ×
e ×
f

γ 1 2 3 4 5 6

a
b ×
c
d ×
e
f ×

δ 1 2 3 4 5 6

a
b
c ×
d
e ×
f ×



Besides the maximal cluster, we have six minimal ones which are all singletons
consisting of the following triconcepts, respectively:
C1 := ({a1},{b1},{c1, c2}), C2 := ({a2},{b2},{c1, c3}), C3 := ({a3},{b3},{c1, c4}),
C4 := ({a4},{b4},{c2, c3}), C5 := ({a5},{b5},{c2, c4}), C6 := ({a6},{b6},{c3, c4}).

Another assumption, about the number of cluster assumed to be the maximal
dimension of the tricontext plus one, could be disproven.

Example 3. Given the tricontext K466 = (G,M,B, Y ) from Example 2, we define
K646 := (B,G,M, {(b, g,m)|(g,m, b) ∈ Y }) as well as
K664 := (M,B,G, {(m, b, g)|(g,m, b) ∈ Y }), in words, we obtain K646 and K664

by rotating K466 twice. We now let K163 := K466]K646]K664 be the 16×16×16
context built by composing the three. Combining Example 2 with Corollary 2,
we obtain that K163 has 19 clusters, viz. the maximal one and 6 + 6 + 6 = 18
minimal ones.

Remark 2. The issue of whether the number of clusters or minimal clusters is
bounded and what could be an estimation of that bound remains an open ques-
tion.

6 Properties of reachability clusters

This section is devoted to the study of several properties of reachability clusters.
We prove that reachability clusters can be found among some concepts of the
context of reachable triconcepts, more exactly as object concepts.

Proposition 11. Let (A1, B1, C1), (A2, B2, C2) ∈ T(K) with (A1, B1, C1) ≺3

(A2, B2, C2). Then Y 12
C2
⊆ Y 12

C1
.

Proof. Let (g,m) ∈ Y 12
C2

. Then, for every b ∈ C2, we have (g,m, b) ∈ Y . Since
C1 ⊆ C2, we have that for every b ∈ C1, (g,m, b) ∈ Y , hence (g,m) ∈ Y 12

C1
. �

Let K := (K1,K2,K3, Y ) be a triadic context. Let K/ := (T(K),T(K), /)
be the formal context of reachable triconcepts. The concepts of K/ are exactly
the pairs (A,B) having the property that every triconcept from B is reachable
from any of A and (A,B) is maximal with this property. If we take a look at the
concepts of the symmetric kernel of /, i.e., /∩/−1, we get exactly the reachability
clusters of triconcepts without the ordering between them.

Proposition 12. Let (A,B) ∈ K/ be a concept and denote by C := A ∩ B. If
C 6= ∅, then C is a set of mutually reachable concepts, i.e., C ×C is a rectangle
of crosses in K/.

Proof. From the definition, we have that ∀T1, T2 ∈ C, T1 / T2 and T2 / T1. It
follows that all the triconcepts from C are part of the same cluster. �

Remark 3. If we denote with C the set of clusters of triconcepts from K and with
I := {A ∩ B | (A,B) ∈ B(K/), A ∩ B 6= ∅}, i.e., the set of all concepts having
non disjoint extent and intent, then the previous proposition states that I ⊂ C.



Example 4. One might expect that there exist a one-to-one correspondence be-
tween concepts in the context of reachable triconcepts and reachability clusters.
This would mean that the structure of reachability clusters is a concept lattice.
The following example shows that there exist concepts in K/, having disjoint
extent and intent.

α 1 2 3 4

a ×
b
c ×
d ×

β 1 2 3 4

a
b
c ×
d ×

γ 1 2 3 4

a ×
b ×
c
d

δ 1 2 3 4

a ×
b ×
c
d ×

We have ({a}, {1}, {α})/({a, b}, {3}, {γ, δ}), ({a}, {1}, {α})/({c, d}, {2}, {α, β}),
({d}, {4}, {δ})/ ({a, b}, {3}, {γ, δ}), ({d}, {4}, {δ})/ ({c, d}, {2}, {α, β}), and the
context T is given by:

T1 T2 T3 T4 T5 T6 T7

T1 = ({a}, {1}, {α}) × × × × × ×
T2 = ({d}, {4}, {δ}) × × × × × ×
T3 = ({a, b}, {3}, {γ, δ}) × × × ×
T4 = ({c, d}, {2}, {α, β}) × × × ×
T5 = ({a, b, c, d}, {1, 2, 3, 4}, ∅) × × ×
T6 = ({a, b, c, d}, ∅, {α, β, γ, γ}) × × ×
T7 = (∅, {1, 2, 3, 4}, {α, β, γ, γ}) × × ×

The concept ({T1, T2}, {T3, T4, T5, T6, T7}) has disjoint extent and intent.

In the following, we are going to characterize the reachability clusters as
object concepts in the context of reachable triconcepts.

Proposition 13. Let C be a reachability cluster of triconcepts. Then there exists
a concept in (A,B) ∈ K/ with C = A ∩B.

Proof. Consider (C//, C/). �

Proposition 14. If (A,B), (C,D) ∈ B(K/) are two different concepts of the
context K/ of reachable triconcepts with A∩B 6= ∅ and C ∩D 6= ∅, then A∩B 6=
C ∩D.

Proof. Let (A,B), (C,D) ∈ B(K/) be two different concepts. We assume
A ∩ B = C ∩ D = M 6= ∅. Since they are different concepts, we can conclude
that they have different extents and intents, so A 6= C and B 6= D. It follows
that at least one of the extents and one of the intents is bigger than M .

If A 6= M , B 6= M , C = M and D = M (or the other way around) it
contradicts the fact that (C,D) ∈ B(K/) because it is not maximal. We can
conclude that at least the extent of one concept and the intent of the other
concept are bigger than M. Hence, we can assume A 6= M and D 6= M . Let T1 ∈



A \M,T2 ∈M,T3 ∈ D \M . Since T2 ∈M ⊆ B it follows (T1, T2) ∈ I ⇒ T1 / T2.
Since T2 ∈ M ⊆ C it follows (T2, T3) ∈ I ⇒ T2 / T3. From the transitivity of
the relation / we have T1 / T3. Herefrom we conclude that for every T ∈ A \M ,
we have (T, T3) ∈ I, but since M ⊆ C and T3 ∈ D, we also have that for every
T ∈ M , we have (T, T3) ∈ I. It follows that T3 should be in the intent of the
concept (A,B), so T3 ∈ B ⇒ T3 ∈ B∩D = M and we reach a contradiction since
we chose T3 ∈ D \M . Therefore, the two different concepts in B(K/) cannot
have the same intersection of the extent and intent. �

Remark 4. The previous proposition proves that, by intersecting the extent and
intent of the concepts in the context K/ we cannot obtain the same cluster twice.

Proposition 15. Let (A,B), (C,D) ∈ B(K/). Let M := A ∩ B 6= ∅ and N :=
C ∩D 6= ∅. Then M ∩N = ∅.

Proof. By the previous proposition, we know that M 6= N . Assume M ∩N 6=
∅. Let a ∈ A\M , b ∈ B \M , x ∈M \ (M ∩N), y ∈M ∩N , and z ∈ N \ (M ∩N)
be arbitrary elements. Then we have a/y and y / z wherefrom follows that a/ z.
Similarly, we have that from x/y and y / z follows x/ z. We also have that y / z,
hence for all g ∈ A, g / z, i.e., z ∈ A/ = B.

On the other hand, z / y / x / b, hence z / b for all b ∈ B, i.e., z ∈ B/ = A.
We have that z ∈ A ∩B = M and z ∈ N , thus z ∈M ∩N . Contradiction! �

Proposition 16. The sets defined in Remark 3, C and I, are equal: C = I.

Proof. The first part of the equivalence was proved in Proposition 12 which
showed that I ⊆ C. For the converse inclusion, let (A,B) ∈ B(K/) be a concept
and M := A ∩B. Assume M is not maximal and build M ′ := M// ∩M/. Then
M ⊆M ′ which is a contradiction. �

Proposition 17. Let (A,B) ∈ B(K/) with A∩B = ∅. Then (A,B) is a concept
of the contraordinal scale (T(K),T(K),7).

Proof. Since / is a preorder, it makes sense to speak about the contraordinal
scale induced by /. The concepts of the contraordinal scale are exactly the pairs
(A,B) with A oder ideal, B order filter, A ∩ B = ∅, and A ∪ B = T(K). Let
(A,B) ∈ B(K/) with A∩B = ∅. Then for every a ∈ A and every b ∈ B, we have
x / y and y 6 x, i.e., x 7 y.

Let now x ∈ A and z / x. By transitivity, we get that for every b ∈ B, z / b
and z ∈ A. Hence A is an order ideal. Dually, B is an order filter. We only have
to prove that B = {A. Let y ∈ {A. Then for every a ∈ A, y 6 a, which is
equivalent to a 7 y, i.e., y ∈ B. �

Concluding all the results obtained above, the following holds true:

Proposition 18. Let T ∈ T(K) be a triconcept. Then the cluster [T ] of T is
generated by the object concept γ(T ) by T // ∩ T / = [T ]. Herefrom follows that
the reachability clusters are generated by the object concepts of (T(K),T(K), /).
If (A,B) is a proper concept which is not an object concept, then A ∩B = ∅.



Remark 5. The above proposition states that reachability clusters are exactly
the object concepts of the reachability context. This result gives a possibility to
display all reachability clusters, along with a navigation support in a concept
lattice, by highlighting the object concepts and deleting all the others, except
the greatest concept.

7 Exploration strategy and algorithmics

Considering the theoretical aspects introduced in the previous paragraphs, we
use reachability clusters to propose a strategy for navigating inside and between
them. The purpose of this approach is to obtain a tool that can be used for
navigation and visualization of a triadic context. Basically, starting from a tri-
concept, one can browse through all the others from the reachability cluster of
that triconcept, navigate to another triconcept (not necessarily in the same clus-
ter), moving back and forth among these triconcepts in order to explore as much
as possible the triadic conceptual knowledge landscape.

In order to be able to navigate through the data with the proposed paradigm
the following steps are necessary:

(1) compute the triconcepts,
(2) compute the reachability relation between the triconcepts,
(3) compute the clusters of the tricontext,
(4) compute the partial order relation between the clusters.

The first step can be implemented by using Trias [9]. For the second step, we
use the following procedure.

Listing 1.1: Procedure directlyReachable(T1, T2)

I f T1 . extent ⊆ T2 . extent then
Be = extentPro jec t ionContext (T1 . extent )
I f (T2 . intent)′Be

=T2 .modus and
(T2 .modus)′Be

=T2 . intent then
Return true

I f T1 . intent ⊆ T2 . intent then
Bi = intentPro j e c t i onContext (T1 . intent )
I f (T2 . extent)′Bi

=T2 .modus and
(T2 .modus)′Bi

=T2 . extent then
Return true

I f T1 .modus ⊆ T2 .modus then
Bm = modusProjectionContext (T1 .modus)
I f (T2 . extent)′Bm

=T2 . intent and
(T2 . intent)′Bm

=T2 . extent then
Return true

Return fa l se



The procedure checks whether the triconcept T2 is directly reachable from
the triconcept T1. Thereby, extentProjectionContext(T1.extent) represents the
dyadic context obtained by projecting the triadic context on the extent dimen-
sion. This means that all the tricontexts selected have the extent equal or greater
than T1.extent. The derivation (T2.intent)′Be

is considered to be a dyadic deriva-
tion in the obtained projection context Be.

In order to obtain the reachability clusters, the most efficient method is to
obtain the graph of the triconcepts with the direct reachability relation and
compute the strongly connected components. This can be done by using exist-
ing algorithms for computing strongly connected components in directed graphs
which have linear complexity. So for step 3, we consider the directed graph (since
the direct reachability is not a symmetric relation) having the triconcept set as
nodes and the edges given by the direct reachability relation. Then we obtain
the clusters by computing all strongly connected components of the graph.

As proven earlier in the theoretical aspects of the navigation paradigm, the
clusters correspond to nodes in a lattice, but not all the nodes in the lattice
correspond to a cluster. Therefrom, the set of clusters is a partially ordered.
The fact that they are object concepts in a particular concept lattice helps us
navigate form one cluster to another. Also, this assures that we can reach any
triconcept from the tricontext.

8 Conclusions and Further Work

We have proposed an approach to navigating in the space of triconcepts of a
tricontext. To this end we defined three relatedness notions on the triconcepts
based on extent, intent or modus. For each of these three perspectives, the tri-
concepts related to a given tricontext correspond to the concepts of a dyadic
formal context, whence we can leverage the successful visualization approach of
dyadic FCA by displaying, given a triconcept, all similar triconcepts in a lattice
diagram. From such a diagram, a triconcept can be picked by a user, which will
then be the starting point for the next visualization and navigation step.

We have investigated the reachability relation stemming from this navigation
paradigm. As it turned out, for some tricontexts, not every triconcept can be
reached from every other triconcept, although this seems to be the case in most
practical scenarios. This gave rise to the notion of reachability clusters obtained
as maximal sets of mutually reachable triconcepts. These clusters are in turn
ordered by unidirectional reachability and form a partial order which always has
a greatest element. Navigation can start either in one of the minimal clusters
or the user can define its own constraints about included/excluded objects, at-
tributes and/or conditions. By computing all triconcepts satisfying a given set
of constraints, the user can choose them as navigation starting points. Not much
more is known about the order of reachability clusters, some initial conjectures
about upper bounds on their size or existence of suprema had to be refuted
by counterexamples, which nevertheless provided some interesting structural in-
sights and may pave the way to further investigations. As of yet, the only (and



trivial) upper bound for the number of reachability clusters is the number of tri-
concepts, which may be exponential in the size of the tricontext. We, however,
still conjecture that there is a polynomial bound.

Besides these open theoretical questions, future work on the topic has to
include an implementation of the described navigation paradigm and user studies
in order to confirm our hypothesis that this way of displaying and browsing the
space of triconcepts is indeed accessible and intuitive for human users.
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